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Optical networks satisfy high bandwidth and low latency requirements for telecommunication networks and
data center interconnection. To improve network resource utilization, machine learning (ML) is used to accu-
rately model optical amplifiers such as erbium-doped fiber amplifiers (EDFAs), which impact end-to-end system
performance such as quality of transmission. However, a comprehensive measurement dataset is required for
ML to accurately predict an EDFA’s wavelength-dependent gain. We present an open dataset consisting of
202,752 gain spectrum measurements collected from 16 commercial-grade reconfigurable optical add–drop
multiplexer (ROADM) booster and pre-amplifier EDFAs under varying gain settings and diverse channel-loading
configurations over 2,785 hours in total, with a total dataset size of 3.1 GB. With this EDFA dataset, we imple-
mented component-level deep-neural-network-based EDFA models and use transfer learning (TL) to transfer
the EDFA model among 16 ROADM EDFAs, which achieve less than 0.18/0.24 dB mean absolute error for
booster/pre-amplifier gain prediction using only 0.5% of the full target training set. We also showed that TL
reduces the EDFA data collection requirements on a new gain setting or a different type of EDFA on the same
ROADM. © 2023 Optica Publishing Group

https://doi.org/10.1364/JOCN.491901

1. INTRODUCTION

Telecommunication networks and cloud infrastructure rely on
amplified optical networks to deliver high data rates over metro
and long-haul distances. Reconfigurable optical add–drop
multiplexers (ROADMs) are used to add and drop signals
within such networks, and erbium-doped fiber amplifiers
(EDFAs), sometimes in tandem with Raman amplifiers, are
used to overcome node and link losses. The EDFA output
power is typically the main determinant of the signal launch
power, and the EDFA noise figure sets the accumulated ampli-
fier noise levels, which impact end-to-end system performance
metrics such as the optical signal-to-noise ratio (OSNR) and
other quality of transmission (QoT) measures [1]. However,
characterizing the gain spectrum of an EDFA is challenging
as it depends on many factors such as the internal hardware
architecture, gain setting, channel-loading configuration,
and input power levels. For these reasons, vendors are moti-
vated to treat the wavelength-dependent gain of EDFAs as a
variable quantity accounted for through margin allocations.
Therefore, better characterization of amplifier gain is of interest
to achieving low-margin systems.

Recent work has focused on developing accurate models
for the wavelength-dependent gain profiles of optical ampli-
fiers like Raman amplifiers [2,3] and EDFAs [4,5], which can
be further used for effective prediction of the optical power

spectrum evolution [6] and QoT estimation [7,8]. It has been
shown that machine learning (ML) models, such as those based
on deep neural networks (DNNs), can achieve prediction accu-
racy primarily limited by the measurement resolution if the
model is trained on large EDFA gain spectrum measurement
datasets. However, such prior work is built on datasets collected
from very few EDFAs and usually only considers a limited set
of channel-loading configurations and/or input power levels.
Moreover, these datasets are not publicly available, therefore
making it challenging to compare different EDFA models
using the same baseline, as the measurement resolutions and
methods may differ from one experiment to the next.

Although the DNN-based EDFA gain model can achieve
high gain spectrum prediction accuracy, it requires collecting
a comprehensive set of EDFA gain spectrum measurements
for each EDFA. For example, collecting such a dataset for
a single EDFA covering different gain settings and diverse
channel-loading configurations can consume up to 51 h [9].
A promising solution to overcome this challenge is to apply
transfer learning (TL) [10,11], which is an ML technique that
allows for building a new target model based on a pre-trained
source model that shares similar model knowledge using very
few data samples collected from the target domain.

In this paper, we make two key contributions aiming to
address these challenges. First, we present an open dataset of
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the gain spectrum measurements including 16 EDFAs within
8 commercial-grade Lumentum ROADM-20 units deployed
in the city-scale PAWR COSMOS testbed [12]. We consider
EDFAs within the ROADM units targeting metro networks,
which typically consist of more ROADM amplifiers than in-
line amplifiers compared to long-haul networks. The dataset
includes measurements collected from eight booster EDFAs,
each with three gain settings, and eight pre-amplifier EDFAs,
each with five gain settings. For each EDFA at a given gain
setting, 3,168 gain spectrum measurements are collected with
a set of diverse channel-loading configurations and varying
input power levels. Importantly, all data is collected using
the built-in photodiodes (PDs) and optical channel monitors
(OCMs) of each ROADM unit without relying on any external
measurement equipment, thereby providing the equivalent of
in situ characterization results. The comprehensive 202,752
EDFA gain spectrum measurement dataset collected from 16
EDFAs over 2,785 hours is shared publicly and available at [9].
We believe that this dataset can serve as an open resource for
researchers to evaluate and compare different ML-based EDFA
models. It can also be potentially integrated with emulators
such as mininet-optical [13] and planning tools such as GNPy
[1].

Second, we investigate the use of TL-based EDFA gain mod-
els and show that, using only 0.5% of the new data collected
from the target EDFA (13 measurements), the transferred
target model can achieve similar gain prediction accuracy
compared to the source model with the full training set (2,732
measurements). We demonstrate three different scenarios
that can benefit from TL with a largely reduced EDFA data
collection process: (i) TL between EDFAs of the same type,
(ii) TL between different EDFA gain settings, and (iii) TL
between different EDFA types. For TL between EDFAs of
the same type, we achieve an average median absolute error of
0.08 dB for booster amplifiers and 0.10 dB for pre-amplifiers.
For TL between different EDFA gain settings, 0.16 dB MAE
is achieved averaged from two gain settings transferred to and
tested on another gain setting. For TL between different EDFA
types, 0.16 dB MAE is achieved. Based on these evaluation
results, TL-based EDFA gain models can reduce data mea-
surement times 200× without sacrificing model prediction
accuracy.

The rest of the paper is organized as follows. We review
related work in Section 2. We present the EDFA gain spectrum
measurement setup and analysis of the collected dataset in
Sections 3 and 4. Using the collected dataset, we present the
DNN- and TL-based EDFA gain spectrum model in Sections
5 and 6, and conclude in Section 7.

2. RELATED WORK

A. Traditional EDFA Models

EDFAs in terrestrial wavelength-division multiplexed (WDM)
systems with channel add–drop multiplexing use automatic
gain control (AGC) to maintain a target gain, which controls
the total power gain rather than the gain of individual chan-
nels. For example, if the target gain setting is 18 dB, the actual
gain spectrum can have a fluctuation of ±0.5 dB across differ-
ent wavelength channels. Moreover, the channel gain deviates

from the target gain under different channel loading, input
power level, and gain settings, which can be characterized by a
physical model given by Eq. (1) [14]:

ĝ (λi )=
GTC

G M
·

[ ∑
j P j + NI + NC∑

j P j g j t j + g R NR + g I NI

]
· g m(λi ),

(1)
where GTC and G M are the target gain and mean gain, respec-
tively. g m(λi ) is the original channel gain in the i th wavelength
channel at λi , before new input power P j and the correspond-
ing residual ripple g j , and the tilt t j is applied to the j th
wavelength channel at λ j . The noise includes five different
factors: the total input noise NI , total amplifier input-referred
noise NR , amplifier AGC noise compensation factor NC ,
average incident noise gain ripple g I , and input-referred noise
gain ripple g R . However, fully characterizing such factors is
challenging due to many practical reasons.

In practice, the gain variations described in Eq. (1) follow
a center of mass weighting of the channel powers by their
wavelength-dependent gain functions. Based on this, another
well-known model is the center of mass (CM) model, which
uses simple measurements to predict the EDFA gain spectrum
and, for equal channel powers, is given by

g CM(λi )= g wdm(λi )+
1

n

n∑
j=1

[
g single(λ j )− g wdm(λ j )

]
, (2)

where g wdm(λi ) and g single(λ j ) are the gain of the i th wave-
length channel under WDM and single-channel-loading
configurations, respectively. Equation (2) is usually accurate for
the two extreme cases of one channel and all channels turned
on, and approximates the gain spectral behavior for other
loadings, which can vary significantly for complex multi-stage
amplifiers and due to effects such as spectral hole burning [15].

B. ML-Based EDFA Models

Recent research has also focused on using ML to better charac-
terize the wavelength-dependent gain spectrum of EDFAs. In
particular, a DNN-based EDFA gain model was proposed in
[4], where individual sub-models are used to predict the EDFA
output power for random channel configurations under one
single gain and one tilt setting. The measurement is collected
using built-in OCMs and PDs, the first example of an in situ
monitor-based model. Another DNN-based EDFA model
with high accuracy to predict partial-fill EDFA gain profile was
proposed in [5], which was trained using a dataset consisting
of 50,000 measurements using an optical spectrum analyzer
(OSA) with high resolution. The prediction was related to
the WDM measurements, as the output of the model was the
power difference between fully loaded (WDM) and partially
loaded (arbitrary) channel power. You et al. [16] consider
optical signal-to-noise ratio (OSNR) prediction using EDFA
models that use two different models to predict gain profile
and noise figure separately, with an additional OSA for data
collection.

Although individual EDFA models were well investigated,
there are still limitations regarding the use of the ML-based
approach. First, training ML-based EDFA models requires
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tremendous amounts of data that is time consuming to collect
in real-world scenarios, especially in already deployed net-
works. Second, an EDFA model only applies to itself, and data
recollection and model retraining are required for new EDFAs.
Zhu et al. [17] proposed a hybrid ML-based EDFA model
that combines analytical and ML-based models to reduce the
training dataset size and training time. The results showed that
46% of training samples or 20% training time were reduced
when using the output from an analytical model feeding into
the ML model. This method reduced data collection time
but still trained each EDFA model individually. In addition,
Da Ros et al. [18] showed that a pre-trained ML-based EDFA
model can be directly extended to multiple physical devices of
the same make, with low prediction error, by training an EDFA
model using measurements collected from multiple EDFAs
with a benchtop OSA. However, this approach assumes EDFA
gain profiles of the same make were highly similar as it uses a
single model to predict multiple EDFA gain profiles.

ML-based EDFA models were also integrated with multi-
span optical transmission systems for QoT prediction. In
Yankov et al. [19], a generalized EDFA model trained on sep-
arately collected gain spectrum measurements using an OSA
is utilized to predict the OSNR across 8 channels in a 3-span
link. In Kamel et al. [20], OSNR prediction in a 20-span
link with 40 channels using characterized inline EDFAs is
demonstrated, without considering the model generalization
to different topologies. In Wang et al. [6], individually charac-
terized component-level EDFA models were applied to 5-span
ROADM systems with 95 channels and 10 EDFAs, where each
model was trained using measurements collected using built-in
OCMs and photodiodes of the ROADM units.

Compared to this prior work, our study focuses on cre-
ating an EDFA open dataset and component-level EDFA
modeling. We collected gain profile measurements on 16
commercial-grade Lumentum EDFA devices with different
channel-loading configurations, input power levels, and gain
settings. We report the gain profile difference for EDFAs of the
same make and show gain profile variations across a long time
period. In addition to the EDFA dataset, we also show that
measurement time can be largely reduced with TL for EDFAs
of the same make. In particular, TL can be used between differ-
ent EDFA devices of the same type, different gain settings on
the same EDFA device, and different EDFA types on the same
ROADM. A portion of this paper is an expansion of our recent
work [21].

3. EDFA GAIN SPECTRUM MEASUREMENT
SETUP AND DATA COLLECTION

We now describe the EDFA gain spectrum measurement setup
using the COSMOS testbed and the data collection pipeline.

A. PAWR COSMOS Testbed

The PAWR COSMOS testbed is a city-scale optical-wireless
programmable testbed being deployed in Manhattan, New
York City, to support advanced optical and wireless experi-
ments [22]. A more detailed description about COSMOS’
programmable optical network and the supported applications

can be found in [12]. In particular, the testbed consists of one
Calient S320 320× 320 space switch, one Dicon 16× 16
space switch, 8 commercial-grade Lumentum ROADM units,
one customized comb source, various lengths of fiber spools,
and a dark fiber network between Columbia University, the
colocation facility at 32 Avenue of the Americas (32 AoA),
and the City College of New York (CCNY), some of which is
shown in Fig. 1. Using the space switching and WDM switch-
ing capabilities, different topologies in the optical physical
layer that emulate varying metro networks can be constructed
[6,23].

B. EDFA Gain Spectrum Measurement Setup

We characterize the gain spectrum of 16 EDFAs of two types:
booster (B) and pre-amplifier (P), as part of eight commercial-
grade Lumentum ROADM-20 units. Figure 1 shows a block
diagram of the Lumentum ROADM-20 unit and the mea-
surement setup of a device under test (DUT) EDFA. Each
ROADM unit consists of one MUX wavelength-selective
switch (WSS), one DEMUX WSS, one booster EDFA (at line
out), and one pre-amplifier EDFA (at line in). Each ROADM
is also equipped with total power and channel power monitor-
ing capabilities using the built-in PDs and OCMs with a power
measurement resolution of 0.01 and 0.1 dB, respectively. We
use a comb source to generate a set of 95× 50 GHz WDM
channels in the C-band following the ITU DWDM 50 GHz
grid specification [24].

Figure 1 shows the booster and pre-amplifier EDFA mea-
surement topology. With a DUT booster EDFA, the output of
the comb source is connected to an add port of the MUX WSS,
which applies the channel-loading configuration, adjusts the
power level in each loaded channel, and generates a flat input
power spectrum to the DUT EDFA. The output of the DUT
booster is terminated. Similarly, with a DUT pre-amplifier
EDFA, the output of the comb source is first connected to
the pre-amplifier EDFA and DEMUX WSS of an auxiliary
ROADM, whose DEMUX WSS applies the channel-loading
configuration, adjusts the power level in each loaded channel,
and generates a flat output power spectrum at the input of
the DUT pre-amplifier EDFA. The output of the DUT pre-
amplifier EDFA is terminated by the following DEMUX WSS.
The wavelength dependent gain spectrum of each EDFA,
denoted by g (λi ), can be characterized by its input power
spectrum, Sin(λi ), and output power spectrum, Sout(λi ), i.e.,

Fig. 1. (Left) COSMOS optical data center with ROADM
devices. (Right) Block diagram of the Lumentum ROADM-20 unit
and the measurement setup for the DUT booster/pre-amplifier
EDFA.
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Fig. 2. Collected EDFA gain spectrum measurements based on
diverse channel-loading configurations.

g (λi )= Sout(λi )− Sin(λi ), ∀ i = 1, 2, . . . , 95, (3)

with λ1 = 1,529.16 nm (196.050 THz) and λ95 =

1,566.72 nm (191.350 THz).
We use the Network Configuration Protocol (NETCONF)

with Yet Another Next Generation (YANG) data modeling
language to control and collect data from each Lumentum
ROADM unit. For example, we use the add-connection com-
mand to apply the channel-loading configuration, whose input
parameters include the MUX/DEMUX WSS module, connec-
tion index, start/end frequencies, attenuation, input/output
ports, and channel block status. After waiting for a certain
amount of time for the optical system to stabilize, we use the
monitored-channels and monitored-connections commands
to obtain the input and output channel power spectrum mea-
surements. EDFA-related information, such as the gain setting
and gain tilt, can be retrieved via the edfas command. The
collected EDFA input/output power spectrum, together with
other system information, is stored in machine-actionable json
files, which we describe in Section 3.D.

C. Channel Loading Configurations

One main challenge associated with the data collection proc-
ess is the large number of channel-loading configurations,
which can affect the wavelength dependent gain, g (λi ), of each
EDFA. However, it is impossible to measure all 295 configu-
rations with 95× 50 GHz channels where each channel can
be switched ON/OFF with all different input channel power

levels. To address these challenges, we carefully design five sets
of diverse channel-loading configurations (see Fig. 2) with
different numbers of channels n:

(i) Fixed Baseline includes the fully loaded (WDM) (with
n = 95), four half-loaded (lower/upper/even/odd with
n ∈ {47, 48}), and seven selected single/double (adjacent)
loaded (with n ∈ {1, 2}) channel configurations.

(ii) Fixed Goalpost focuses on two sets of consecu-
tive channels located in three channel groups (with
short/medium/long wavelength) and includes 15 balanced
and 12 imbalanced goalpost channel configurations with
n ∈ {2, 4, 8, 16, 32} and n ∈ {9, 18}, respectively.

(iii) Fixed Extra includes the complete set of 95 single and 94
double (adjacent) channel-loading configurations.

(iv) Random Baseline includes 100, 50, and 20 random
channel-loading configurations for each value of n ∈ {1, 2,
. . . , 5}, {6, 8, . . . , 20}, {21, 24, . . . , 48}, respectively.

(v) Random Extra expands Random Baseline and includes 10
random channel-loading configurations for each value of
n ∈ {1, 2, . . . , 94, 95}.

D. Collected Dataset

We consider a target gain of g B ∈ {15, 18, 21} dB and
g P ∈ {15, 18, 21, 24, 27} dB for each booster and pre-
amplifier EDFA, respectively, in the high-gain mode. We
consider 0 dB gain tilt for all EDFAs targeting metro networks,
where Raman tilt is less significant and thus 0 dB gain tilt is a
simple and low-cost option that can be selected by different ser-
vice providers and system vendors. For each of the 16 EDFAs
at a given gain setting, a total number of 3,168 measurements
are collected where, for each channel-loading configuration,
we also collected repeated measurements with varying EDFA
input power levels for comprehensiveness, as summarized
in Table 1. In particular, each measurement is stored in the
machine-actionable json COSMOS EDFA format (see Listing
1 for the structure of the captured measurement data), which
includes

(i) the input and output power spectrum of the EDFA mea-
sured by the OCM, Sin(λi ) and Sout(λi ), from which
g (λi ) can be derived;

(ii) the total input and output power of the EDFA measured
by the PD, Pin and Pout;

Table 1. Summary of the Measurements for Each EDFA (Booster or Pre-amplifier) under a Given Gain Setting

Channel-Loading
Configurations

(# of Loaded Channels, n)
× (# of Channel-Loading

Configurations with the Same n)
# of Different Input

Channel Power Levels

# of Repeated Measurements
for Each Channel-Loading

Configuration
Total # of

Measurements

Fixed baseline 95× 1 (WDM), 48× 2
(lower/odd), 47× 2 (upper/even),

1× 7 (single), 2× 7 (double)

5 (WDM),
2 (single/double),

2 (lower/upper/odd/even)

20 (WDM), 5 (single/double),
5 (lower/upper/odd/even)

280

Fixed goalpost [2, 4, 8, 16, 32] × 3 (balanced),
[9, 18] × 6 (imbalanced)

2 (balanced),
2 (imbalanced)

5 (balanced), 5 (imbalanced) 270

Fixed extra 1× 95 (single), 2× 94 (double) 2 (single), 2 (double) 2 (single), 1 (double) 568
Random baseline [1, 2, ... , 5] × 100,

[6, 8, ... , 20] × 50,
[21, 24, ... , 48] × 20

1 1 1,100

Random extra [1, 2, ... , 94, 95] × 10 1 1 950
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Fig. 3. Input–output power of the collected EDFA gain spectrum
measurements overlaid on the EDFA gain masks (high gain mode).

(iii) auxiliary information such as the EDFA gain setting,
channel-loading configuration, and WSS attenuation
setting.

The EDFA gain profile measurement can be time-
consuming, mainly due to the time it takes to set the WSS
attenuation values (0.85 s) and channel-loading configuration
(3 s), and to fetch the OCM/PD readings (6 s). To guaran-
tee that the OCM power readings are reliable, extra waiting
time is applied depending on channel-loading conditions.
On average, each measurement lasts ∼41 s and ∼58 s for the
booster and pre-amplifier EDFA, respectively. Overall, the
collected dataset, with a size of 3.1 GB, includes a total number of
202,752 gain spectrum measurements across 16 EDFAs collected
over 2,785 hours.

4. EDFA GAIN SPECTRUM MEASUREMENT
RESULTS

We now provide a quantitative overview of the collected EDFA
gain profile measurement dataset. For each EDFA with a given
channel-loading configuration, we focus on

(i) the total input–output power relationship, (Pin, Pout);
(ii) the gain ripple as a function of the wavelength, given by

g̃ (λi )= g (λi )− g 0, ∀ i , where g 0 is the EDFA gain set-
ting, i.e., we consider gain ripple normalized to the target
gain instead of with zero mean;

(iii) the peak-to-peak gain ripple, given by maxi {g̃ (λi )} −

mini {g̃ (λi )} across the loaded wavelength channels.

Figure 3 shows the total input–output power relationship,
(Pin, Pout), of the collected EDFA gain spectrum measurement
dataset obtained using the built-in PDs (see Fig. 1). The input–
output power measurements are also overlaid on the EDFA
gain mask (in the high-gain mode) with the corresponding
operation/alarm range of each EDFA specified by the vendor
(Lumentum). In particular, different curves represent the
measured (Pin, Pout) values under different gain settings across
all EDFAs of the same type. It can be seen that the collected
dataset covers a significant portion of the high gain range for
both the booster EDFA (13.4–23.4 dB) and pre-amplifier
EDFA (14.8–29.8 dB). Overall, most of the measurement
results exhibit a linear input–output power relationship, except
for scenarios where the EDFA output power is close to the
lower limit of the operation range, e.g., Pin <−20 dBm. These
measurements are important since the built-in OCMs can
be ensured to maintain the 0.1 dB measurement resolution
when the EDFA operates within the operation range, and may
provide alarming and fault detection when the EDFA operates
outside the operation range but inside the alarm range.

Through analysis of the gain ripple spectrum of individual
EDFAs under different gain settings and channel-loading
configurations, a better understanding of the wavelength-
dependent gain spectrum among all tested EDFAs can be
derived. Figure 4 shows examples of the measured gain ripple
spectrum, g̃ (λi ), for all 16 EDFAs at 18 dB gain setting, under
the full (WDM) and single-channel-loading configurations.
The gain ripple is normalized to the target gain (instead of with

Fig. 4. Measured gain ripple of 16 EDFAs at 18 dB gain setting, under WDM/single channel-loading configurations.

Fig. 5. Measured gain ripple of four EDFAs at different gain settings, under WDM/single channel-loading configurations.
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Fig. 6. Mean peak-to-peak gain ripple across eight booster and
eight pre-amplifier EDFAs with different gain settings.

zero mean) and the different gain profiles across EDFAs can
be clearly visualized. The solid lines represent the mean gain
ripple averaged across all measurements, while the shaded areas
represent the full range of the measured gain ripple, including
the minimum and maximum values. It can be seen that dif-
ferent types of EDFA (booster or pre-amplifier), or different
EDFA devices of the same type (e.g., booster EDFA of two
ROADM units), have different gain ripple spectra and that
the gain ripple spectrum of each EDFA also depends on the
channel-loading configurations (WDM or single channels).

In addition, Fig. 5 shows the measured gain ripple spec-
tra of the EDFAs in ROADM 1 and ROADM 5 across all
considered gain settings and under the full (WDM) and single-
channel-loading configurations. It can be seen that with the full
(WDM) channel-loading configuration, the gain ripple spec-
trum for the booster EDFA is similar across the 15/18/21 dB
gain settings, but different from that of the pre-amplifier
EDFA across the same gain settings, especially in channels with
longer wavelengths. Similarly, the gain ripple spectrum for the
pre-amplifier EDFA is similar across the 15/18/21/24/27 dB
gain settings. Overall, it can be observed that the gain ripple
profile for each EDFA depends on many factors including the
gain setting, channel-loading configurations, and input power
level. To obtain overall statistics of the gain ripple spectrum for
different EDFA devices, types, and gain settings, Fig. 6 shows
the mean peak-to-peak gain ripple averaged across all channel-
loading configurations for each EDFA at a given gain setting.
In particular, each entry represents the mean peak-to-peak gain
ripple for one EDFA at a given gain setting, averaged across
3,168 gain spectrum measurements. The results show that the
mean peak-to-peak gain ripple is within a range of 0.5–0.9 dB
but varies by different EDFA types, devices, and gain settings.

We also evaluate the variation of the EDFA gain spectrum
across a long time period, which is important due to factors
such as the potential aging of the hardware. In particular,
10 months after completion of the initial dataset collection,
we re-collected the gain spectrum measurements for all 16
EDFAs at 18 dB gain settings and under the same channel-
loading configurations (see Table 1). Figure 7 shows the gain
ripple spectrum for the EDFAs in ROADMs 1 and 5 under
the WDM (full) channel-loading configurations from the first
and second measurement round using solid and dashed lines,
respectively. It can be seen that the difference in the gain ripple

Fig. 7. Example gain ripple spectrum measurements of the booster
and pre-amplifier EDFAs at 18 dB gain setting and under WDM
channel-loading configurations, spanning 10 months.

Fig. 8. Mean, 95th-percentile, and maximum values of the abso-
lute difference in the two rounds of EDFA gain ripple spectrum mea-
surements spanning 10 months.

spectrum across the measurements spanning 10 months is
minimal, i.e., the difference in the mean gain ripple is only
<0.2 dB. We also analyze the mean/95th-percentile/maximum
absolute difference in the gain spectrum measurements span-
ning 10 months for individual booster and pre-amplifier
EDFAs, and the results are shown in Fig. 8. Note that the 95th-
percentile and maximum absolute difference has a resolution of
0.1 dB, due to the 0.1 dB measurement resolution of the built-
in OCMs. Overall, the mean difference in the gain spectrum
measurements spanning 10 months is less than 0.1 dB, while
the 95th-percentile difference is within 0.3 dB. We would like
to note that more measurements are ongoing, with the aim to
provide a comprehensive characterization of the EDFA gain
spectrum across different devices and time spans.

5. DNN-BASED EDFA GAIN SPECTRUM MODEL

In this section, we present a DNN-based EDFA model for
characterizing the wavelength-dependent gain spectrum using
the collected dataset, and compare it against the CM model.

A. Architecture of the DNN-Based EDFA Model

Figure 9 shows the DNN model architecture, which consists
of an input layer, four hidden layers with 256/128/128/128
neurons, and an output layer, where the neurons are initialized
by the Kaiming normalization. The input features to the DNN
model include the EDFA gain setting (g 0), total input and out-
put power (Pin and Pout), input power spectrum (Sin(λi )), and
a binary vector indicating the channel-loading configuration,
denoted by c= [c i ]

95
i=1, with

c i =

{
1, if the i th wavelength channel is switched on,
0, otherwise.

(4)
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Fig. 9. Architecture of the DNN model used for EDFA gain pre-
diction. Transfer learning reinitializes the orange output layer before
retraining.

The output layer predicts the EDFA gain spectrum, g (λi ), cor-
responding to the input parameters. For the input and hidden
layers, we apply batch normalization and use the exponential
linear unit (ELU) activation function. We consider the follow-
ing loss function based on the mean squared error (MSE) of
the predicted and ground truth gain spectrum profile across the
loaded channels:

MSE=
1∑95

i=1 c i
·

∑
i :c i=1

[
g pred(λi )− g meas(λi )

]2
, (5)

where g pred(λi ) and g meas(λi ) denote the predicted and mea-
sured gain in the i th wavelength channel, respectively. A
component-level DNN model is trained for each EDFA with
the same setting: a gradient clipping threshold of 3.0 and a
learning rate of 0.001 over 600 epochs.

We use all the EDFA gain spectrum measurements under
three gain settings of 15/18/21 dB to train and test the per-
formance of the DNN-based EDFA gain model. Note
that although there are two additional gain settings for the
pre-amplifier (24/27 dB), we only choose the dataset corre-
sponding to the 15/18/21 dB gain setting to keep a consistent
size of the dataset used for the DNN model training and test-
ing across the booster and pre-amplifier EDFA types. For each
gain setting, we split the EDFA gain measurement dataset
into the training/test sets with a split ratio of 0.86/0.14: 2,732
gain spectrum measurements are used as the training set, and
the remaining 436 gain spectrum measurements are used as
the test set. Specifically, the test set includes 20% of the Fixed
Goalpost (216 measurements) and 20% of the Random Baseline
(220 measurements) gain spectrum measurements, which
represent a diverse set of channel-loading configurations with
randomly selected channels and groups of close-by channels
(see Table 2).

B. Performance of the DNN-Based EDFA Gain Model

We now show the performance of the developed DNN-based
model and compare it with the CM model [Eq. (2)]. Figure 10
shows the mean absolute error (MAE) and standard deviation
of the EDFA gain spectrum predicted by the component-level
DNN and CM models, across eight booster and pre-amplifier
EDFAs using test sets with different channel-loading configu-
rations (random and goalpost). Specifically, across the eight

Table 2. Dataset Split for Training (Including Both the
DNN- and TL-Based EDFA Gain Models) and Test at
Each EDFA Gain Setting

Training
Set

Test Set
(Baseline)

Test Set
(Goalpost)

Training Set
for TL

Number of
measurements

2,732 220 216 13

Ratio 86% 7% 7% 0.5%

Fig. 10. MAE of the gain spectrum prediction error achieved
by the component-level DNN and CM EDFA models across eight
boosters and eight pre-amplifiers on two test sets.

booster EDFAs, the DNN model achieves an average MAE
of 0.05 and 0.06 dB under the random and goalpost test set,
respectively, outperforming that achieved by the CM model
(0.21 and 0.21 dB, respectively). Similarly, across the eight
pre-amplifier EDFAs, the DNN model achieves an average
MAE of 0.06 and 0.07 dB under the random and goalpost
test set, respectively, again outperforming that achieved by the
CM model (0.19 and 0.20 dB, respectively). The DNN-based
model also achieves a smaller variance compared to the CM
model. This demonstrates that the DNN model is able to
improve the EDFA gain spectrum prediction accuracy via
learning from a large measurement dataset. Note that since
the resolution of the OCM readings is 0.1 dB per channel, the
model cannot achieve a prediction accuracy that exceeds the
0.05 dB quantization error, which is observed from our results.

Figure 11 shows the mean and standard deviation of the
positive/negative gain prediction errors when keeping the sign,
i.e., separately calculated across the errors with the ± signs.
The results show a similar trend whereby the DNN model
outperforms the CM model in terms of prediction accuracy.
Overall, the DNN-based model suffers from slightly larger
prediction errors for the goalpost test set compared to the ran-
dom test set. To visualize how the prediction errors distribute
across the frequencies, Fig. 12 shows the mean error of the
positive/negative (+/−) gain prediction in each wavelength
channel, across all eight EDFAs of each type and both the
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Fig. 11. Mean errors of the positive/negative (+/−) gain predic-
tion achieved by the DNN and CM EDFA models across eight boost-
ers and eight pre-amplifiers on two test sets.

Fig. 12. Mean errors of the positive/negative (+/−) gain predic-
tion on each wavelength channel achieved by the DNN model across
eight boosters and eight pre-amplifiers on two test sets.

random and goalpost test sets. It can be observed that the per-
channel mean errors are similar across the wavelength channels
on both booster and pre-amplifier EDFAs.

Figure 13 shows the cumulative distribution function
(CDF) of the absolution error of gain spectrum prediction
across all EDFAs of the same type, under both the DNN and
CM models. The results show that for booster EDFAs, the
DNN model is able to achieve a median gain prediction error
of 0.05/0.06 dB for the random/goalpost test set, which is
significantly smaller than that achieved by the CM model
(0.21/0.21 dB for the random/goalpost test set). In terms
of the tail performance, the DNN model is able to achieve
a 95th-percentile gain prediction error of 0.13/0.15 dB for
the random/goalpost test set, which is again much smaller
than that achieved by the CM model (0.58/0.58 dB for the
random/goalpost test set). The results for the pre-amplifiers

Fig. 13. CDF of absolute errors on component DNN and CM
EDFA models across eight booster and eight pre-amplifier EDFAs.

Table 3. Maximum Absolute Error for EDFA Gain
Spectrum Prediction Achieved by the CM and DNN
Models

Booster Random Goalpost Pre-amplifier Random Goalpost

CM 1.13 dB 1.09 dB CM 1.14 dB 1.08 dB
DNN 0.81 dB 0.50 dB DNN 0.89 dB 0.57 dB

show similar trends when comparing the performance achieved
by the DNN and CM models. In addition, Table 3 shows the
maximum absolute errors of the gain spectrum prediction
achieved by the DNN and CM models. For both test sets,
the maximum absolute errors of DNN are smaller than those
achieved by the CM models. The maximum absolute errors
achieved by the DNN and CM models across all test sets
and EDFA types are 0.89 and 1.14 dB, respectively. Such a
maximum error achieved by the model can be used to provide
insights into the system margin design.

6. TL-BASED EDFA GAIN SPECTRUM MODEL

TL is an ML method that uses domain knowledge from a
pre-trained model to apply to a new but similar problem. In
this section, we show that TL can be used to model the gain
spectrum modeling across different EDFAs with minimum
data collection.

A. TL Model and Target Dataset Selection

We apply the following TL procedure to transfer a DNN-based
source model to a target model . First, the input layer and all four
hidden layers of the DNN (see Fig. 9) are frozen, which are
treated as the feature extractor of the DNN model, and the
weights of the output layer using the Kaiming normalization
are reinitialized. Then, the DNN model is re-trained using
the same MSE loss function given by Eq. (4) with a step size
of 0.05 over 150 epochs. Finally, all layers are unfrozen and
fine-tuned with a step size of 0.001 over 20 epochs, while the
batch normalization parameters are kept unchanged.
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Using the dataset and DNN-based EDFA model described
above, we first investigate for a given (pre-trained) source
model, how much new data is needed from a target EDFA.
We consider all cases where each booster/pre-amplifier EDFA
serves as the source model, which is then transferred to each of
the seven other booster/pre-amplifier EDFAs using different
sizes of target EDFA datasets. Let Ntgt and Nsrc denote the
number of gain spectrum measurements at each gain setting
used to train the source model and construct the target model
for TL, respectively. We consider Nsrc = 2,732 gain spectrum
measurements from the source EDFA and different numbers of
measurements from the target EDFA:

(i) Ntgt = 5 gain spectra under fully loaded channel configu-
rations, with Ntgt/Nsrc = 0.2%;

(ii) Ntgt = 13 gain spectra under fully loaded and half loaded
channel configurations, with Ntgt/Nsrc = 0.5%;

(iii) Ntgt = 41 gain spectra under fully/half/single/double
loaded channel configurations, with Ntgt/Nsrc = 1.5%.

Figure 14 shows the MAE and standard deviation of the
EDFA gain spectrum prediction accuracy averaged across
all possible source–target model pairs for the random and
goalpost test sets, with varying ratios of Ntgt/Nsrc. The
results show that the average EDFA gain prediction accu-
racy achieved by the target model with a target–source data
size ratio of Ntgt/Nsrc = 0.5% outperforms that achieved with
Ntgt/Nsrc = 0.2%, but is comparable to that achieved with
Ntgt/Nsrc = 1.5%. Therefore, we empirically select Ntgt = 13
with Ntgt/Nsrc = 0.5% in the rest of the evaluations, which
largely reduces the target data size 200× while achieving an
MAE of <0.2 dB across all EDFAs. Below, we evaluate the
performance of TL-based EDFA models in three scenarios.

B. TL between EDFAs of the Same Type

Figure 15 shows the MAE matrices (in dB) across eight EDFAs
of the same type (booster or pre-amplifier) under the random
and goalpost test sets, with three gain settings (15/18/21 dB)
and a target data size of Ntgt = 13 (Ntgt/Nsrc = 0.5%). In each
MAE matrix, (i) entry (i, i), i = 1, . . . , 8 corresponds to the
component-level DNN-based EDFA model (i.e., without
TL), and (ii) entry (i, j ), j 6= i corresponds to the transferred
EDFA model with the i th and j th EDFA being the source and
target model, respectively. For the i th row in the MAE matrix,
each entry (i, i) is always smaller than (i, j ), ∀ j 6= i . This
shows that the TL-based model always achieves a slightly larger
gain spectrum prediction error than the DNN-based model

Fig. 14. MAE of the EDFA gain spectrum prediction achieved by
the TL-based EDFA gain model with varying target to source data
size ratios, Ntgt/Nsrc.

Fig. 15. MAE matrix (in dB) of ML-based EDFA gain spectrum
prediction averaged across the random and goalpost test sets, where
entry (i, i) corresponds to the DNN-based EDFA model (without
TL), and entry (i, j ), i 6= j represents the TL-based model trained
on the i th source EDFA and transferred j th target EDFA.

without TL, which is as expected given the limited number of
new measurements used for deriving the target model.

To compare the TL on two test sets, it can be observed that
for booster EDFAs, the TL-based model achieves an MAE
between 0.06–0.12 and 0.08–0.18 dB on the random and
goalpost test sets, respectively. Similarly, for pre-amplifier
EDFAs, the TL-based model achieves an MAE between
0.09–0.18 and 0.12–0.24 dB on the random and goalpost
test sets, respectively. In particular, TL achieves better average
gain prediction accuracy for booster EDFAs compared to the
pre-amplifier EDFAs, and suffers from lower accuracy under
goalpost channel-loading configurations, exhibiting a similar
trend to the performance of the component-level DNN model
presented in Section 5. We expect that the performance of the
target model can be further improved by including (a small
number of ) gain measurements under the random/goalpost
channel-loading configurations in the target data. Overall, the
MAE achieved by the target booster/pre-amplifier model is
within 0.18/0.24 dB across all the test sets.

In addition, Fig. 13 shows the CDF of the absolute predic-
tion error achieved by the TL-based models compared to the
DNN-based models. The results show that for booster EDFAs,
the TL-based model achieves a median absolute error of
0.06/0.09 dB on random/goalpost test sets, which is (slightly)
worse than that achieved by the DNN-based model but out-
performs the CM models. Similar trends have been observed
for pre-amplifiers EDFAs. In terms of the tail performance, the
95th absolute errors for booster/pre-amplifier EDFAs achieved
by TL-based model prediction are 0.22/0.28 and 0.32/0.50 dB
for random and goalpost test sets (see Fig. 13). However, TL
does not perform well in terms of the maximum absolute error
(which can be a few dB) due to the limited new data collected
from the target EDFA. Improving the prediction accuracy
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Fig. 16. MAE of the EDFA gain spectrum prediction accuracy
using TL from one (left) or two (right) source gain settings to another
target gain setting on the same booster EDFA.

for TL-based EDFA gain models, especially with goalpost
channel-loading configurations, is considered as a subject of
our future research.

C. TL between Gain Settings of the Same EDFA

Figure 16 shows the MAE and standard deviation of the
booster EDFA gain spectrum prediction accuracy achieved by
the TL-based model trained using one or two source gain set-
tings, and then transferred to the target model using additional
measurements from a new target gain setting. For example,
“15 & 18→ 21” means that the source model is trained using
EDFA gain spectrum measurements with 15 and 18 dB gain
settings, and then transferred to the target model using mea-
surements with 21 dB gain setting. The results show that the
TL approach using a single source gain setting can result in an
MAE of up to 0.8 and 1.0 dB under the random and goalpost
test sets, respectively. These MAE values under the random and
goalpost test sets can be further reduced to 0.21 and 0.19 dB
with the additional domain knowledge from the measurements
under a second gain setting of 15 dB. In addition, the standard
deviation of the gain spectrum prediction error is reduced with
the additional domain knowledge. Overall, the MAE across
all source/target gain combinations achieved by the TL-based
models with two gain settings is 0.16 dB. Similar MAE per-
formance is observed for TL-based models constructed for the
pre-amplifier EDFAs.

D. TL between EDFA Types

So far, we consider TL between the same EDFA type (booster
or pre-amplifier); another way that can benefit the target
EDFA data collection process is to apply TL across different
EDFA types. Figure 17 shows the MAE and standard deviation
averaged across eight ROADMs of the EDFA gain spectrum
prediction accuracy when transferred from a source booster
model with three gain settings to a target pre-amplifier model
(B→ P) or vice versa (P→ B) on the same ROADM, com-
pared to the DNN-based model without TL (B→ B and
P→ P). The MAE achieved by the target model is all within
0.21 dB with an average MAE of 0.16 dB, and TL introduces
an MAE degradation of only 0.06/0.10 dB and 0.10/0.13 dB
for the booster/pre-amplifier EDFA compared to that achieved
by the source model under the random and goalpost test sets,
respectively.

Fig. 17. TL between different EDFA types (B, booster; P,
pre-amplifier) on the same ROADM.

7. CONCLUSIONS

We measured and provided an open EDFA gain spectrum
dataset collected from 16 commercial-grade ROADM booster
and pre-amplifier EDFAs under different gain settings and
channel-loading configurations. The dataset includes 202,752
gain spectrum measurements collected over 2,785 hours, with
a total dataset size of 3.1 GB. Using this dataset, we investi-
gated TL-based EDFA gain models that can achieve an MAE of
less than 0.24 dB using only 0.5% of the full dataset of the new
EDFA device. We showed that the EDFA gain models can be
transferred between different EDFAs of the same type, differ-
ent gain settings on the same EDFA, and different EDFA types
with varying accuracy. For future work, we plan to expand the
collected dataset to include different types of EDFA (e.g., in-
line EDFA) and consider EDFA gain spectrum measurements
with non-zero gain tilt settings, which are more suitable for
long-haul networks. We will also consider the measurements
of the EDFA noise figure using built-in OCMs (with proper
calibrations) or a benchtop optical spectrum analyzer.

APPENDIX A: EXAMPLE EDFA GAIN SPECTRUM
MEASUREMENT DATASET IN JSON FORMAT

Listing 1. Structure Outline for JSON-Based Dataset Files

{“measurement_data”: [
{“open_channel_type”: “fully_loaded_channel_wdm”,
“attenuation_setting”: 2,
“calient_input_power_comb_source”: 5.83,
“calient_input_power_roadm_dut_edfa”: 6.02,
“roadm_dut_edfa_info”:

{“input_power”:−1.88,
“output_power”: 16.14,
“target_gain”: 18.0,
“target_gain_tilt”: 0.0,
...,},

“roadm_dut_line_port_info”: {...},
“roadm_dut_wss_port_info”: {...},
“roadm_dut_wss_num_active_channel”: 95,
“roadm_dut_wss_active_channel_index”: [1,2,...,95],
“roadm_dut_wss_attenuation”:

{“1”: 0.0,
...,
“95”: 1.5},

(Table continued)
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“roadm_dut_wss_input_power_spectra”:
{“1”:−21.8,
...,
“95”:−15.9},

“roadm_dut_wss_output_power_spectra”:
{“1”:−26.3,
...,
“95”:−21.7},

“roadm_dut_booster_output”:
{“1”:−8.2,
...,
“95”:−3.8},},

...,]
}
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